Unfolding and translocation pathway of substrate protein controlled by structure in repetitive allosteric cycles of the ClpY ATPase.
نویسندگان
چکیده
Clp ATPases are ring-shaped AAA+ motors in the degradation pathway that perform critical actions of unfolding and translocating substrate proteins (SPs) through narrow pores to deliver them to peptidase components. These actions are effected by conserved diaphragm-forming loops found in the central channel of the Clp ATPase hexamer. Conformational changes, that take place in the course of repetitive ATP-driven cycles, result in mechanical forces applied by the central channel loops onto the SP. We use coarse-grained simulations to elucidate allostery-driven mechanisms of unfolding and translocation of a tagged four-helix bundle protein by the ClpY ATPase. Unfolding is initiated at the tagged C-terminal region via an obligatory intermediate. The resulting nonnative conformation is competent for translocation, which proceeds on a different time scale than unfolding and involves sharp stepped transitions. Completion of the translocation process requires assistance from the ClpQ peptidase. These mechanisms contrast nonallosteric mechanical unfolding of the SP. In atomic force microscopy experiments, multiple unfolding pathways are available and large mechanical forces are required to unravel the SP relative to those exerted by the central channel loops of ClpY. SP threading through a nonallosteric ClpY nanopore involves simultaneous unfolding and translocation effected by strong pulling forces.
منابع مشابه
Stepwise activity of ClpY (HslU) mutants in the processive degradation of Escherichia coli ClpYQ (HslUV) protease substrates.
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease composed of ClpY (HslU), an ATPase with unfolding activity, and ClpQ (HslV), a peptidase. In the ClpYQ proteolytic complex, the hexameric rings of ClpY (HslU) are responsible for protein recognition, unfolding, and translocation into the proteolytic inner chamber of the dodecameric ClpQ (HslV). Each of the three domain...
متن کاملAsymmetric Interactions of ATP with the AAA+ ClpX6 Unfoldase: Allosteric Control of a Protein Machine
ATP hydrolysis by AAA+ ClpX hexamers powers protein unfolding and translocation during ClpXP degradation. Although ClpX is a homohexamer, positive and negative allosteric interactions partition six potential nucleotide binding sites into three classes with asymmetric properties. Some sites release ATP rapidly, others release ATP slowly, and at least two sites remain nucleotide free. Recognition...
متن کاملLethal factor unfolding is the most force-dependent step of anthrax toxin translocation.
Cellular compartmentalization requires machinery capable of translocating polypeptides across membranes. In many cases, transported proteins must first be unfolded by means of the proton motive force and/or ATP hydrolysis. Anthrax toxin, which is composed of a channel-forming protein and two substrate proteins, is an attractive model system to study translocation-coupled unfolding, because the ...
متن کاملO-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملStructural Insights into the Allosteric Operation of the Lon AAA+ Protease.
The Lon AAA+ protease (LonA) is an evolutionarily conserved protease that couples the ATPase cycle into motion to drive substrate translocation and degradation. A hallmark feature shared by AAA+ proteases is the stimulation of ATPase activity by substrates. Here we report the structure of LonA bound to three ADPs, revealing the first AAA+ protease assembly where the six protomers are arranged a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 6 شماره
صفحات -
تاریخ انتشار 2011